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Abstract For real parameters α and β such that 0 ≤ α < 1 < β, we denote by S(α, β) the class of

normalized analytic functions which satisfy the following two-sided inequality:

α < R

(
zf ′(z)

f(z)

)
< β, z ∈ U,

where U denotes the open unit disk. We find a sufficient condition for functions to be in the class

S(α, β) and solve several radius problems related to other well-known function classes.
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1 Introduction, Definitions and Preliminaries

Let A denote the class of functions f(z), analytic in the open unit disk

U = {z : z ∈ C and |z| < 1},
which are normalized by

f(0) = 0 and f ′(0) = 1.

Also let S denote the subclass of A composed of functions which are univalent in U. As usual,
we denote by S∗ and K the classes of functions in A which are, respectively, starlike and convex
in U. It is well known that

K ⊂ S∗ ⊂ S.
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We say that f is subordinate to F in U, written as f ≺ F (z ∈ U), if and only if

f(z) = F
(
w(z)

)
for some Schwartz function w(z) such that

w(0) = 0 and |w(z)| < 1, z ∈ U.

If F is univalent in U, then the subordination f ≺ F is equivalent to

f(0) = F (0) and f(U) ⊂ F (U).

We denote by S∗(A,B) the subclass of S∗ consisting of the functions in A such that

zf ′(z)
f(z)

≺ 1 +Az

1 +Bz
, z ∈ U.

The subclass SP of the function class A is composed of parabolic starlike functions in U, which
satisfy the following inequality (see [9]):∣∣∣∣zf

′(z)
f(z)

− 1
∣∣∣∣ ≤ R

(
zf ′(z)
f(z)

)
, z ∈ U.

Recently, Sokó�l [2, 10, 11] introduced the class SL as a subclass of S∗, which consists of
functions f(z) in A such that

zf ′(z)
f(z)

≺ √
1 + z, z ∈ U.

Moreover, a function f ∈ A is said to be strongly starlike of order α (0 ≤ α < 1) in U if∣∣∣∣ arg
(
zf ′(z)
f(z)

)∣∣∣∣ ≤ π

2
α, z ∈ U.

Definition 1.1 Let the parameters α and β be real numbers such that 0 ≤ α < 1 < β. A
function f ∈ A is said to belong to the class S(α, β) if f satisfies the following inequality :

α < R

(
zf ′(z)
f(z)

)
< β, z ∈ U; 0 ≤ α < 1 < β.

We remark that, for given parameters α and β (0 ≤ α < 1 < β), f ∈ S(α, β) if and only if
f satisfies each of the following two subordination relationships:

zf ′(z)
f(z)

≺ 1 + (1 − 2α)z
1 − z

, z ∈ U and
zf ′(z)
f(z)

≺ 1 + (1 − 2β)z
1 − z

, z ∈ U.

The above-defined function class S(α, β) was introduced by Kuroki and Owa [5]. By using
the following lemma, they also investigated several coefficient estimates for f ∈ S(α, β).

Lemma 1.2 (Kuroki and Owa [5]) Let f(z) ∈ A and 0 ≤ α < 1 < β. Then f ∈ S(α, β) if
and only if

zf ′(z)
f(z)

≺ 1 +
(
β − α

π

)
i log

(
1 − e2πi( 1−α

β−α )z

1 − z

)
, z ∈ U. (1.1)

Lemma 1.2 means that the function p(z) defined by

p(z) = 1 +
(
β − α

π

)
i log

(
1 − e2πi( 1−α

β−α )z

1 − z

)
(1.2)
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maps the unit disk U onto the strip domain w with α < R(w) < β. We also note that the
function f ∈ A, given by

f(z) = z exp
((

β − α

π

)
i
∫ z

0

1
t

log
(

1 − e2πi( 1−α
β−α )z

1 − z

)
dt

)
(1.3)

is in the class S(α, β).
In our present investigation, we first find a sufficient condition for functions to be in the class

S(α, β). We then solve several radius problems related to other well-known function classes.
For various other radius problems, which were considered recently for many different analytic
function classes, the interested reader may be referred (for example) to the works [1, 4, 8, 12].

2 Relations Involving Bounds on the Real Parts

Lemma 2.1 below is a fairly well-known result.

Lemma 2.1 (MacGregor [6]) Let f ∈ A. Also let

R

(
1 +

zf ′′(z)
f ′(z)

)
> α, z ∈ U, 0 ≤ α < 1.

Then

R

(
zf ′(z)
f(z)

)
> Φ(α), z ∈ U,

where

Φ(α) :=

⎧⎪⎨
⎪⎩

1 − 2α
2(21−2α − 1)

, α �= 1
2
,

1
2 log 2

, α =
1
2
.

(2.1)

Another known result (Lemma 2.2 below) will also be needed in finding the relations in-
volving upper bounds.

Lemma 2.2 (Miller and Mocanu [7]) Let Ξ be a set in the complex plane C and let b be a
complex number such that R(b) > 0. Suppose that a function ϑ : C

2 × U → C satisfies the
following condition:

ϑ(iρ, σ; z) �∈ Ξ, z ∈ U, ρ, σ ≤ −|b− iρ|2
2R(b)

.

If the function p(z) defined by

p(z) = b+ b1z + b2z
2 + · · ·

is analytic in U and if

ϑ
(
p(z), zp′(z); z

) ∈ Ξ,

then

R{p(z)} > 0, z ∈ U.

Theorem 2.3 Let f ∈ A, β > 1 and

R

(
1 +

zf ′′(z)
f ′(z)

)
< β, z ∈ U. (2.2)
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Then

R

(
zf ′(z)
f(z)

)
< Ψ(β) :=

−1 + 2β +
√

4β2 − 4β + 9
4

. (2.3)

Proof First, we note that

Ψ(β) :=
−1 + 2β +

√
4β2 − 4β + 9

4
> 1, β > 1.

Thus, if we let

p(z) =
1

1 − Ψ(β)

(
zf ′(z)
f(z)

− Ψ(β)
)
, (2.4)

then p(z) is analytic in U and p(0) = 1. Differentiating both sides of (2.4) with respect to z,
we easily obtain

1 +
zf ′′(z)
f ′(z)

= [1 − Ψ(β)]p(z) + Ψ(β) +
[1 − Ψ(β)]zp′(z)

[1 − Ψ(β)]p(z) + Ψ(β)

= ψ
(
p(z), zp′(z)

)
,

where
ψ(r, s) := [1 − Ψ(β)]r + Ψ(β) +

[1 − Ψ(β)]s
[1 − Ψ(β)]r + Ψ(β)

.

Using (2.2), we have

{ψ(
p(z), zp′(z)

)
: z ∈ U} ⊂ {w : w ∈ C and R(w) < β} =: Ω.

Now, for all real numbers ρ, σ ≤ − |1−iρ|2
2 , we have

R{ψ(iρ, σ)} = R

(
[1 − Ψ(β)]iρ+ Ψ(β) +

[1 − Ψ(β)]σ
[1 − Ψ(β)]iρ+ Ψ(β)

)

= Ψ(β) − [Ψ(β) − 1]
σΨ(β)

[Ψ(β)]2 + [1 − Ψ(β)]2ρ2

≥ Ψ(β) +
Ψ(β)[Ψ(β) − 1](1 + ρ2)

2([Ψ(β)]2 + [1 − Ψ(β)]2ρ2)
.

If we let the function g(ρ) be given by

g(ρ) =
1 + ρ2

[Ψ(β)]2 + [Ψ(β) − 1]2ρ2
,

then g(ρ) is a continuous even function of the argument ρ and g(ρ) satisfies each of the following
relationships:

g(0) =
1

[Ψ(β)]2

and
lim

ρ→∞ g(ρ) =
1

[Ψ(β) − 1]2
>

1
[Ψ(β)]2

.

Also, upon differentiating g(ρ) with respect to ρ, we obtain

g′(ρ) =
2[2Ψ(β) − 1]ρ

{[Ψ(β)]2 + [Ψ(β) − 1]2ρ2}2
.

Hence, g′(ρ) = 0 occurs only at ρ = 0. Therefore, we have

g(ρ) ≥ 1
[Ψ(β)]2

, ρ ∈ R,
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which yields

R{ψ(iρ, σ)} ≥ Ψ(β) +
Ψ(β)[Ψ(β) − 1]g(ρ)

2

≥ 2[Ψ(β)]2 + Ψ(β) − 1
2Ψ(β)

= β.

This shows that R{ψ(iρ, σ)} �∈ Ω. By Lemma 2.2, we thus conclude that R{p(z)} > 0 and that
the inequality (2.3) holds true. The proof of Theorem 2.3 is thus complete. �

By combining Lemma 2.1 and Theorem 2.3, we can obtain the following result.

Theorem 2.4 Let f ∈ A. Suppose also that

α < R

(
1 +

zf ′′(z)
f ′(z)

)
< β, z ∈ U, 0 ≤ α < 1 < β. (2.5)

Then

Φ(α) < R

(
zf ′(z)
f(z)

)
< Ψ(β), (2.6)

where Φ(α) and Ψ(β) are given in (2.1) and (2.3), respectively.

3 Radius Problems Involving Subclasses of Analytic Functions

Our first result on the radius problem involves the function class S(α, β).

Theorem 3.1 Let the function f be in the class S(α, β). Then, for each z (|z| = r < 1),

1 −
(
β − α

π

)
arctan

(
a1(r)

)
< R

(
zf ′(z)
f(z)

)
< 1 −

(
β − α

π

)
arctan

(
a2(r)

)

and (
β − α

π

)
log

(
t1(r)

)
< I

(
zf ′(z)
f(z)

)
<

(
β − α

π

)
log

(
t2(r)

)
,

where

a1(r) :=
(r2 − r4 cosϕ) sinϕ+

√
D(r)

(sin2 ϕ− 1)r4 + 2r2 − 1
, (3.1)

a2(r) :=
(r2 − r4 cosϕ) sinϕ− √

D(r)
(sin2 ϕ− 1)r4 + 2r2 − 1

, (3.2)

t1(r) :=

√
1 − 2r2 cosϕ+ r4 − (√

2(1 − cosϕ)
)
r

1 − r2
, (3.3)

t2(r) :=

√
1 − 2r2 cosϕ+ r4 +

(√
2(1 − cosϕ)

)
r

1 − r2
(3.4)

and

D(r) := r4(1 − r2 cosϕ)2 sin2 ϕ+ r2(1 − cosϕ)[r4(sin2 ϕ− 1) + 2r2 − 1]

· [r2(1 + cosϕ) − 2], (3.5)

with ϕ being given by

ϕ := 2
(

1 − α

β − α

)
π.
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Proof Suppose that f ∈ S(α, β). Then, by Lemma 1.2, we have

zf ′(z)
f(z)

≺ 1 +
(
β − α

π

)
i log

(
1 − e2πi( 1−α

β−α )z

1 − z

)
, z ∈ U.

Thus, by the definition of subordination, there is a Schwartz function w(z), satisfying the
following conditions:

w(0) = 0 and |w(z)| < 1, z ∈ U,

such that
zf ′(z)
f(z)

= 1 +
(
β − α

π

)
i log

(
1 − e2πi( 1−α

β−α )w(z)
1 − w(z)

)
, z ∈ U.

We now put

q(z) =
1 − e2πi( 1−α

β−α )w(z)
1 − w(z)

,

which readily yields
q(z) − 1 =

(
q(z) − e2πi( 1−α

β−α )
)
w(z).

For |z| ≤ r < 1, using the known fact that (see [3])

|w(z)| ≤ |z|, z ∈ U,

we find that
|q(z) − 1| ≤ |q(z) − e2πi( 1−α

β−α )| · r, |z| ≤ r < 1. (3.6)

If we put

q(z) = u+ iv and ϕ = 2π
(

1 − α

β − α

)
,

then, upon squaring both sides of (3.6), we get
(
u− 1 − r2 cosϕ

1 − r2

)2

+
(
v +

r2 sinϕ
1 − r2

)2

≤ 2r2(1 − cosϕ)
(1 − r2)2

. (3.7)

Hence, q maps the disk
Ur := {z : z ∈ C and |z| ≤ r < 1}

onto the circle which the center C is given by

C :
(

1 − r2 cosϕ
1 − r2

,−r
2 sinϕ
1 − r2

)

and radius R given by

R :=
√

2(1 − cosϕ)
(

r

1 − r2

)
.

We note also that the origin O is outside of the circle (3.7).
We shall now find the bounds of |q(z)|. Since the origin O is outside of the circle (3.7),

|q(z)| is less than the sum of OC and the radius R and |q(z)| is greater than the difference of
OC and the radius R, that is,

|q(z)| ≤
√

1 − 2r2 cosϕ+ r4 +
(√

2(1 − cosϕ)
)
r

1 − r2
=: t2(r)
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and

|q(z)| ≥
√

1 − 2r2 cosϕ+ r4 − (√
2(1 − cosϕ)

)
r

1 − r2
=: t1(r),

which are already given by (3.4) and (3.3), respectively.
Next, in order to find the bounds of arg{q(z)}, we let v = au be the equation of a straight

line L which is tangent to the circle (3.7). Then u satisfies the following equation:

(1 + a2)u2 + 2
(
− 1 − r2 cosϕ

1 − r2
+
ar2 sinϕ
1 − r2

)
u

+
(1 − r2 cosϕ)2 + r4 sin2 ϕ− 2r2(1 − cosϕ)

(1 − r2)2
= 0.

Since the line L is tangent to the circle (3.2), we have(
− 1 − r2 cosϕ

1 − r2
+
ar2 sinϕ
1 − r2

)2

− (1 + a2)
(

(1 − r2 cosϕ)2 + r4 sin2 ϕ− 2r2(1 − cosϕ)
(1 − r2)2

)
= 0.

Solving this last equation for the unknown parameter a, we can obtain precisely the solutions
a1(r) and a2(r) asserted by the equations (3.1) and (3.2) in terms of D given by (3.5). Therefore,
the upper and the lower bounds of arg q(z) are arctan

(
a1(r)

)
and arctan

(
a2(r)

)
, respectively.

Hence, log(q(z)) maps the circle Ur into the rectangle D1, where

D1 = {(u, v) : log
(
t2(r)

) ≤ u ≤ log
(
t1(r)

)
and arctan

(
a2(r)

) ≤ v ≤ arctan
(
a1(r)

)}.
Thus, clearly, the function i log

(
q(z)

)
maps the circle Ur into the rectangle D2, where

D2 = {(u, v) : − arctan
(
a1(r)

) ≤ u ≤ − arctan
(
a2(r)

)
and log

(
t2(r)

) ≤ v ≤ log
(
t1(r)

)}.
Multiplying by β−α

π each bound of the rectangle D2 and translating the region by 1 along the
u-axis, we can obtain the following region:

D =
{

(u, v) : 1 −
(
β − α

π

)
arctan

(
a1(r)

) ≤ u ≤ 1 −
(
β − α

π

)
arctan

(
a2(r)

)

and
(
β − α

π

)
log

(
t2(r)

) ≤ v ≤
(
β − α

π

)
log

(
t1(r)

)}
,

which is mapped into the circle Ur by the function p(z) given by

p(z) = 1 +
(
β − α

π

)
i log

(
q(z)

)
. �

Theorem 3.2 Let α, β, γ and δ be given such that

0 ≤ α < γ < 1 and β > δ > 1.

Let the function f be in the class S(α, β). Suppose also that a1(r) and a2(r) are given (as in
Theorem 3.1) by (3.1) and (3.2), respectively. Then

f ∈ S(γ, δ), |z| ≤ r0,

where
r0 = min{r1, r2}, r1, r2 ∈ (0, 1),
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and r1 and r2 are the smallest root of the following equations :

1 −
(
β − α

π

)
arctan

(
a1(r)

) − γ = 0

and

1 −
(
β − α

π

)
arctan

(
a2(r)

) − δ = 0,

respectively.

Proof By Theorem 3.1, for each z (|z| = r), the function f satisfies the following two-sided
inequality:

1 −
(
β − α

π

)
arctan

(
a1(r)

)
< R

(
zf ′(z)
f(z)

)
< 1 −

(
β − α

π

)
arctan

(
a2(r)

)
.

For the function f to be in the class S(γ, δ), it suffices to satisfy the following inequalities:

1 −
(
β − α

π

)
arctan

(
a1(r)

)
> γ (3.8)

and

1 −
(
β − α

π

)
arctan

(
a2(r)

)
< δ. (3.9)

We now define a function g : [0, 1] → R by

g(r) := 1 −
(
β − α

π

)
arctan

(
a1(r)

) − γ.

Then g is continuous and g(0) = 1 − γ > 0. Since

lim
r→1−

a1(r) =
1 − cosϕ

sinϕ
and tan2

(
1
2
ϕ

)
=

1 − cosϕ
sinϕ

, (3.10)

we have

lim
r→1−

g(r) = α− γ < 0.

Hence, there exists a solution of the equation g(r) = 0 in (0, 1). Let r1 ∈ (0, 1) be the smallest
root of g(r) = 0. Then g(r) > 0 for all r < r1. Therefore,

1 −
(
β − α

π

)
arctan

(
a1(r)

)
> γ

for all r < r1. Using the same argument as above, we can show that there exists a solution
r2 ∈ (0, 1) of the equation:

1 −
(
β − α

π

)
arctan

(
a2(r)

) − δ = 0

and that

1 −
(
β − α

π

)
arctan

(
a2(r)

)
< δ

for all r < r2. Hence, if we put r0 = min{r1, r2}, then the function f satisfies (3.8) and (3.9).
Consequently, f ∈ S(γ, δ) in |z| ≤ r0. �
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Theorem 3.3 Let f ∈ S(α, β). Then the radius of f to be a strongly starlike function of
order γ in U is r0, where r0 ∈ (0, 1) is the smallest root of the following equation:

arctan
(

(β−α
π ) log

(
t2(r)

)
1 − (β−α

π ) arctan
(
a1(r)

)
)
− π

2
γ = 0, (3.11)

where a1(r) and t2(r) are given (as in Theorem 3.1) by (3.1) and (3.4), respectively.

Proof We first note that
log(t2(r)) = − log(t1(r)).

Hence, by Theorem 3.1, for f ∈ S(α, β), we have
∣∣∣∣ arg

{
zf ′(z)
f(z)

}∣∣∣∣ ≤ arctan
(

(β−α
π ) log

(
t2(r)

)
1 − (β−α

π ) arctan
(
a1(r)

)
)
.

Thus, for the function f to be a strongly starlike function of order γ in U, it suffices to satisfy
the following inequality:

h(r) := arctan
(

(β−α
π ) log

(
t2(r)

)
1 − (β−α

π ) arctan
(
a1(r)

)
)
− π

2
γ < 0.

Using these observations in (3.10), we can easily show that

h(0) = −π
2
γ < 0 and lim

r→1−
h(r) = ∞.

Hence, there exists a solution of the equation h(r) = 0 in (0, 1). Let r0 ∈ (0, 1) be the smallest
root of the equation h(r) = 0. Then h(r) < 0 for r < r0. Thus, f is a strongly starlike function
of order γ for z (|z| ≤ r0). �

Putting α = 1
2 , β = 3

2 and γ = 1
2 in Theorem 3.3, we can obtain the following corollary.

Corollary 3.4 Let f ∈ S( 1
2 ,

3
2 ). Then the radius of f to be a strongly starlike function of

order 1
2 in U is 0.981868 · · · .

Theorem 3.5 Let f ∈ S(α, β). Also let a1(r) and t2(r) be given (as in Theorem 3.1) by (3.1)
and (3.4), respectively. Then the radius of f to be in the class SP is r0, where r0 ∈ (0, 1) is the
smallest root of the following equation:

(
(β − α)

π

)2[
log

(
t2(r)

)]2 +
(

2(β − α)
π

)
arctan

(
a1(r)

) − 1 = 0. (3.12)

Proof We note that f ∈ SP if and only if the function zf ′(z)
f(z) is in the parabolic region given

by
Λ = {(u, v) : v2 < 2u− 1}.

Thus, for the function f to be in the class SP, it suffices to show that the point(
1 −

[
β − α

π

]
arctan

(
a1(r)

)
,

[
β − α

π

]
log

(
t2(r)

))

is in the parabolic region Λ, that is,
[(

β − α

π

)
log

(
t2(r)

)]2

< 2
[
1 −

(
β − α

π

)
arctan

(
a1(r)

)] − 1.
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We now define a function k : [0, 1] → R by

k(r) :=
(
β − α

π

)2[
log

(
t2(r)

)]2 +
(

2(β − α)
π

)
arctan

(
a1(r)

) − 1.

Then

k(0) = −1 < 0 and lim
r→1−

k(r) = ∞.

Hence, there exists a solution of the equation k(r) = 0 in (0, 1). Let r0 ∈ (0, 1) be the smallest
root of k(r) = 0. Then k(r) < 0 for all r < r0. Hence, f(z) ∈ SP for all z (|z| ≤ r0). �

Putting α = 1
2 and β = 3

2 in Theorem 3.5, we can obtain the following corollary.

Corollary 3.6 Let f ∈ S( 1
2 ,

3
2 ). Then the radius of f to be in the class SP is 0.697818 · · · .

Theorem 3.7 Let the function f be in the class S(α, β). Suppose also that a1(r), a2(r), t1(r)
and t2(r) are given (as in Theorem 3.1) by (3.1) to (3.4). Then

f ∈ SL, |z| ≤ r0,

where

r0 := min{r1, r2}, r1, r2 ∈ (0, 1),

and r1 and r2 are the smallest root of the following equations:
([

1 −
(
β − α

π

)
arctan

(
a1(r)

)]2

−
[(

β − α

π

)
log

(
t2(r)

)]2

− 1
)2

+
(

2(β − α)
π

)2[
log

(
t1(r)

)]2 ·
[
1 −

(
β − α

π

)
arctan

(
a1(r)

)]2

− 1 = 0, (3.13)

and ([
1 −

(
β − α

π

)
arctan

(
a2(r)

)]2

−
[(

β − α

π

)
log

(
t2(r)

)]2

− 1
)2

+
(

2(β − α)
π

)2[
log

(
t1(r)

)]2 ·
[
1 −

(
β − α

π

)
arctan

(
a2(r)

)]2

− 1 = 0, (3.14)

respectively.

Proof We note that f ∈ SL if and only if the function zf ′(z)
f(z) is in the bounded region Γ given

by

Γ := {(u, v) : u4 + v4 + 1 + 2u2v2 − 2u2 − 2v2 < 1}.

We note also that this region Γ is symmetric to the u-axis in uv-plane and

log
(
t1(r)

)
= − log

(
t2(r)

)
.

Thus, if (
1 −

[
β − α

π

]
arctan

(
a1(r)

)
,

[
β − α

π

]
log

(
t2(r)

)) ∈ Γ (3.15)

and (
1 −

[
β − α

π

]
arctan

(
a2(r)

)
,

[
β − α

π

]
log

(
t2(r)

)) ∈ Γ, (3.16)
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then f ∈ SL for |z| = r < 1. The conditions (3.15) and (3.16) are equivalent to the following
inequalities:([

1 −
(
β − α

π

)
arctan

(
a1(r)

)]2

−
[(

β − α

π

)
log

(
t2(r)

)]2

− 1
)2

+
(

2(β − α)
π

)2[
log

(
t1(r)

)]2 ·
[
1 −

(
β − α

π

)
arctan

(
a1(r)

)]2

− 1 < 0 (3.17)

and ([
1 −

(
β − α

π

)
arctan

(
a2(r)

)]2

−
[(

β − α

π

)
log

(
t2(r)

)]2

− 1
)2

+
(

2(β − α)
π

)2[
log

(
t1(r)

)]2 ·
[
1 −

(
β − α

π

)
arctan

(
a2(r)

)]2

− 1 < 0, (3.18)

respectively. We now define a function g : [0, 1] → R by

g(r) =
([

1 −
(
β − α

π

)
arctan

(
a1(r)

)]2

−
[(

β − α

π

)
log

(
t2(r)

)]2

− 1
)2

+
(

2(β − α)
π

)2[
log

(
t1(r)

)]2 ·
[
1 −

(
β − α

π

)
arctan

(
a1(r)

)]2

− 1.

Then g is continuous in [0, 1]. Furthermore, we have

g(0) = −1 and lim
r→1−

g(r) = ∞.

Hence, there exists a solution of the equation g(r) = 0 in (0, 1). Let r1 ∈ (0, 1) be the smallest
root of g(r) = 0. Then g(r) < 0 for all r < r1. Hence, (3.17) holds true for all r < r1. Using
the same argument as above, we can find r2 ∈ (0, 1) such that (3.14) holds true and that, for all
r < r2, (3.18) holds true. Thus, if we put r0 = min{r1, r2}, then the function f satisfies (3.17)
and (3.18). Consequently, f ∈ SL in |z| ≤ r0. �
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