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Abstract For real parameters a and 3 such that 0 < a < 1 < 3, we denote by S(«, 3) the class of

normalized analytic functions which satisfy the following two-sided inequality:

2f'(2)

°‘<%( 72)

><ﬁ7 zeU,

where U denotes the open unit disk. We find a sufficient condition for functions to be in the class

S(a, ) and solve several radius problems related to other well-known function classes.
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1 Introduction, Definitions and Preliminaries

Let A denote the class of functions f(z), analytic in the open unit disk
U={z:2€Cand |z| <1},

which are normalized by
f(0)=0 and f(0)=1.

Also let S denote the subclass of A composed of functions which are univalent in U. As usual,

we denote by S* and K the classes of functions in A which are, respectively, starlike and convex

in U. It is well known that
KcS*cS.
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1134 Kwon O. S., et al.

We say that f is subordinate to F' in U, written as f < F' (z € U), if and only if
£(2) = F(w(2)
for some Schwartz function w(z) such that
w(0)=0 and |w(z)] <1, zeU.
If F is univalent in U, then the subordination f < F' is equivalent to
f(0)=F(0) and f(U)cC F(U).
We denote by S*(A, B) the subclass of S* consisting of the functions in A such that
zf'(z) { 14+ Az
f(2) 1+ Bz’

The subclass SP of the function class A is composed of parabolic starlike functions in U, which

eU.

satisfy the following inequality (see [9]):
2f'(2) ‘ <Zf%2)>
-1 <R , zel.
f(2) f(2)
Recently, Sokét [2, 10, 11] introduced the class SL as a subclass of 8*, which consists of
functions f(z) in A such that

2f'(2)
f(z)
Moreover, a function f € A is said to be strongly starlike of order o (0 < v < 1) in U if
arg <Z]{£S)>‘ < ga, z e U.
Definition 1.1 Let the parameters o and 3 be real numbers such that 0 < a <1< (. A
function f € A is said to belong to the class S(a, B) if f satisfies the following inequality:
2f'(2)
f(2)
We remark that, for given parameters o and § (0 < a <1< f), f € S(a, 8) if and only if
f satisfies each of the following two subordination relationships:
zf'(z) 14+ (1-2a)z zf'(z) 14+ (1-206)z
JC N T C N T
The above-defined function class S(«, 3) was introduced by Kuroki and Owa [5]. By using

<V1+z zel.

a<’ﬁ< ><ﬂ, zeU;0<a<l<p.

, z€U and , ze€l.

the following lemma, they also investigated several coefficient estimates for f € S(a, ).

Lemma 1.2 (Kuroki and Owa [5]) Let f(z) € Aand 0 < a <1< 3. Then f € S(a, ) if

and only if
sl

2f'(z) 8—a). 1—e2m(5-0),
1 1 . 1.1
12) < —+—< o )ilos L , 2z€U (1.1)

Lemma 1.2 means that the function p(z) defined by
1 — e2mi(520) ,

1.2
(") (12
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Some Radius Problems Related to a Certain Subclass of Analytic Functions 1135

maps the unit disk U onto the strip domain w with a@ < R(w) < F. We also note that the
function f € A, given by

_ z _ 27ri(1:‘;)
f(z):zexp<(ﬁwa)i/0 110g<1 el—z z)dt) (1.3)

is in the class S(«, 3).

In our present investigation, we first find a sufficient condition for functions to be in the class
S(a, 8). We then solve several radius problems related to other well-known function classes.
For various other radius problems, which were considered recently for many different analytic

function classes, the interested reader may be referred (for example) to the works [1, 4, 8, 12].

2 Relations Involving Bounds on the Real Parts

Lemma 2.1 below is a fairly well-known result.

Lemma 2.1 (MacGregor [6]) Let f € A. Also let

9%(1 + Z]J:,I;S)) >a, z€U,0<a<]l.
Then (2)
2f'(z
9{( ) ) > O(a), z€0,
where
1—-2a 1
—2« ) « # )
()= 22D 2 2.1)
210g 2’ “T o

Another known result (Lemma 2.2 below) will also be needed in finding the relations in-
volving upper bounds.
Lemma 2.2 (Miller and Mocanu [7]) Let = be a set in the complex plane C and let b be a
complex number such that |(b) > 0. Suppose that a function ¥ : C? x U — C satisfies the

following condition:

—ipl?
d(ip,0;2) € E, 2z€U, p,o< _|b2m(1§)| .
If the function p(z) defined by
p(2) =b4brz+ b2 +---
is analytic in U and if
O(p(2), 2/ (2); 2) € E,
then
R{p(z)} >0, zel.
Theorem 2.3 Let f € A, 3> 1 and
Zf”(z))
<pB, zel. 2.2
128 22
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Then
! —1+2 462 —46+9
m(i{é?) <u@) =" ﬁﬂ{lﬁ s (2.3)
Proof First, we note that

_ —1+28+ /462 — 4349 -

v(3): A 1, B>1.

Thus, if we let

1 (e
RN GISEL )] 2

then p(z) is analytic in U and p(0) = 1. Differentiating both sides of (2.4) with respect to z,
we easily obtain

2f"(2)
f'(z)

[1-¥(B)=p'(2)

b 11— U(B)p(=) + U(B)

=[1 =¥ (B)p(z) + ¥(B) +

= ¢(p(z), zp’(z)),

where

[1—w(p)ls

Y(r,s) == [1L = V(B)]r+¥(B) + [1—W(B)r+ ‘I’(ﬂ)

Using (2.2), we have
{¥(p(2),2p'(2)) : 2 € U} C {w : w € C and R(w) < B} =: Q.

Now, for all real numbers p,o < — |1_2ip |2, we have
Rutip. ) =R (- v+ v+ Lo )
oW (B)

=U(6) - [v(B) —1] [(T(3))2 4 [1 — ¥(B)]2p?
U(B)[¥(8) —1)(1 + p?)
2V s(w @)+ 1 - w@Pe)

If we let the function g(p) be given by
14 p?
9(p) = 2 2,2°
(WA + [®(B) —1]*p
then g(p) is a continuous even function of the argument p and g(p) satisfies each of the following

relationships:

and
1

P90 = (w12 7 g
Also, upon differentiating g(p) with respect to p, we obtain
{[T(B)? + [W(B) — 1]2p*}*

—

Hence, ¢'(p) = 0 occurs only at p = 0. Therefore, we have

WWW.Me



Some Radius Problems Related to a Certain Subclass of Analytic Functions 1137

which yields

R{w(ip, o)} > (5) + T(B)[w(B) —1]g(p)

2
2N+ (B ~1_
- 29(p) '
This shows that R{(ip,0)} € Q. By Lemma 2.2, we thus conclude that R{p(z)} > 0 and that
the inequality (2.3) holds true. The proof of Theorem 2.3 is thus complete. (]

By combining Lemma 2.1 and Theorem 2.3, we can obtain the following result.

Theorem 2.4 Let f € A. Suppose also that

zf"(2)
a<m(H—ﬂ@)><@ zelU, 0<a<l<p. (2.5)
Then
B(a) < m(ZJ{(S)) < U(g), (2.6)

where ®(a) and VU(B) are given in (2.1) and (2.3), respectively.

3 Radius Problems Involving Subclasses of Analytic Functions
Our first result on the radius problem involves the function class S(a, §).

Theorem 3.1 Let the function f be in the class S(«, 3). Then, for each z (|z] =r < 1),

- (ﬂ - O‘) arctan (a1 (r)) < m(i{é?) <1- (5 - 0‘) arctan (as(r))

and
f—a zf'(z) f—a
( - )log (ti(r)) <§< ) > < ( . >log (t2(r)),
where
o (r2 — r* cos ¢) sin p + \/9(7')
a(r) = (sin?p—1)rd+2r2 -1 (3.1)
o (r? — r* cos @) sin p — \/D(r)
az(r) = (sinp—1)rd+2r2 -1 (3.2)
() = V1 —2r2cosp +17'4_;2(\/2(1 — cos cp))r, (3.3)
() = V1 —2r2cosp +17'4_4T—2(\/2(1 —cos))r (3.4)
and
D(r) :=r4(1 — 12 cos )2 sin? o + 2(1 — cos ) [rd(sin® p — 1) + 2r? — 1]
[r?*(1 4 cos ) — 2], (3.5)
with ¢ being given by
ALibl
- &Y
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1138 Kwon O. S., et al.

Proof Suppose that f € S(«,3). Then, by Lemma 1.2, we have

2f'(2) B-a\. (1-emGi);
£(2) -<1+< - >1log< 1— ), z e U.

Thus, by the definition of subordination, there is a Schwartz function w(z), satisfying the
following conditions:
w(0)=0 and |w(z)]<1l, zeU,

ZJ{;S) =1+ ( ;a>ilog (1 N efi(fj(i))w(z)), 2 eU.

such that

‘We now put

which readily yields
4(2) =1 = (g(2) = "G )w(z).
For |z| <r < 1, using the known fact that (see [3])
lw(2)| <2, ze€l,

we find that
la(z) — 1] < |g(z) — G- py 2] <7 < 1. (3.6)

If we put

1—
¢(z) =u+iv and <p=27r(ﬂ_z>,

then, upon squaring both sides of (3.6), we get
1—7r2cose 2 r2sin ¢ 2 2r2(1 — cos )
— < . 3.7
(u 1—r2 ) +<U+ 1—7‘2) - (1—=r2)2 (3.7)
Hence, ¢ maps the disk
U,:={z:z2e€Cand |z|<r <1}

onto the circle which the center C is given by

1_2 2 o
C:( r?cosp  rising

1—r2 7 1—12 >
and radius R given by

R:= \/2(1—coscp)<1_rr2>.

We note also that the origin O is outside of the circle (3.7).

We shall now find the bounds of |¢(z)|. Since the origin O is outside of the circle (3.7),
lg(2)| is less than the sum of OC and the radius R and |g(z)] is greater than the difference of
OC and the radius R, that is,

S ta(r)
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and

4()] > V1 —2r2cosp +17‘4 —2(\/2(1 —cosp))r
-r

which are already given by (3.4) and (3.3), respectively.

=: tl(’l‘),

Next, in order to find the bounds of arg{q(z)}, we let v = au be the equation of a straight
line L which is tangent to the circle (3.7). Then u satisfies the following equation:

1—7r2cosp  ar’sing
T4a 42 —
(1+a*)u” + ( 12 |2
N (1—r%cosp)? +r*sin® o — 2r3(1 — cosp) 0
(1—1r2)2 -
Since the line L is tangent to the circle (3.2), we have
1—7r2cosp  ar’sing 2
1—r2 1—r2
(14 (1—r%cosp)? +r*sin®p —2r2(1 —cosp)\ 0
“ (1—r2)2 i

Solving this last equation for the unknown parameter a, we can obtain precisely the solutions
a1(r) and as(r) asserted by the equations (3.1) and (3.2) in terms of © given by (3.5). Therefore,
the upper and the lower bounds of arg ¢(z) are arctan (a,l (r)) and arctan (ag(r)), respectively.

Hence, log(q(z)) maps the circle U, into the rectangle D, where
Dy = {(u,v) : log (t2(r)) < u <log (t1(r)) and arctan (az(r)) < v < arctan (a1(r))}.
Thus, clearly, the function ilog (q(z)) maps the circle U, into the rectangle D5, where

Dy = {(u,v) : —arctan (a1(r)) < u < —arctan (az(r)) and log (t2(r)) < v < log (t1(r))}.
B—a

T

Multiplying by each bound of the rectangle Dy and translating the region by 1 along the

u-axis, we can obtain the following region:

D= {(u,u) :1— (5 ; a) arctan (ay(r)) <u<1-— (6 ; a) arctan (as(r))

and (ﬁ ; a> log (t2(r)) <v < (ﬁ ; a) log (tl(r))}7

which is mapped into the circle U, by the function p(z) given by

B—a).
p(z) =1+ ( - ilog (q(z)) O
Theorem 3.2 Let o, 3,7y and § be given such that
0<a<y<l and [>06>1.

Let the function [ be in the class S(a, 3). Suppose also that ai(r) and as(r) are given (as in
Theorem 3.1) by (3.1) and (3.2), respectively. Then

f € 8(776)7 |Z| < To,

{T15T2}) 1,72 € (0»1)7

WWW.Me
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and r1 and ry are the smallest root of the following equations:
1- (B ; a) arctan (a1 (r)) —v =0

and

1- </B - a) arctan (as(r)) — & = 0,

™
respectively.

Proof By Theorem 3.1, for each z (|z] = r), the function f satisfies the following two-sided

inequality:
80—« zf'(z) 08—«
1- ( i ) arctan (ay(r)) < 9‘%( i) <l1—(" " )arctan (az(r)).
For the function f to be in the class S(v,d), it suffices to satisfy the following inequalities:
1- <ﬁ ; a) arctan (aq(r)) > (3.8)
and
1- (ﬂ B a) arctan (az(r)) < 6. (3.9)
™

We now define a function g : [0,1] — R by

g(r) ==1—<ﬂ_a

™
Then g is continuous and ¢g(0) =1 —~ > 0. Since

) arctan (aq(r)) — 7.

. 1 —cosgp 5 (1 1 —cosp
1 = d t = .1
o () sin ¢ o o <2 <'0> sing ' (3.10)

we have

lim g(r)=a—v<0.

r—1—

Hence, there exists a solution of the equation g(r) = 0in (0,1). Let r; € (0,1) be the smallest
root of g(r) = 0. Then g(r) > 0 for all » < ry. Therefore,

1- (5 - "‘) arctan (a; (r)) > 7

for all » < r;. Using the same argument as above, we can show that there exists a solution

ro € (0,1) of the equation:

1- (ﬂ - O‘) arctan (as(r)) =6 =0

and that
1-— (ﬂ B a) arctan (as(r)) < &
T

for all r < ro. Hence, if we put 9 = min{rq,rs}, then the function f satisfies (3.8) and (3.9).

WWW.Me




Some Radius Problems Related to a Certain Subclass of Analytic Functions 1141

Theorem 3.3 Let f € S(a,3). Then the radius of f to be a strongly starlike function of

order v in U is o, where rog € (0,1) is the smallest root of the following equation:

arctan (7)o (12(r))
’ <1 — (P~*)arctan (a; (r))

where a1(r) and t2(r) are given (as in Theorem 3.1) by (3.1) and (3.4), respectively.

) - ;T’y =0, (3.11)

Proof We first note that
log(tz(r)) = —log(t1(r)).
Hence, by Theorem 3.1, for f € S(«, ), we have
o { LY (|80
a g{ f(z) < arcta 1-— (ﬂ;o‘) arctan (ay(r)) .

Thus, for the function f to be a strongly starlike function of order « in U, it suffices to satisfy

the following inequality:
F=) log (t
h(r) := arctan( ( T J1og (t2(1)) > - 7r’y < 0.
1— ("~*)arctan (a1 (r)) 2

Using these observations in (3.10), we can easily show that

h(0)=—"~<0 and lim h(r) = cc.
2 r—1—
Hence, there exists a solution of the equation h(r) = 0 in (0,1). Let 7o € (0,1) be the smallest
root of the equation A(r) = 0. Then h(r) < 0 for r < rg. Thus, f is a strongly starlike function
of order v for z (|z| < rp). O
Putting o = é, 0= g and v = é in Theorem 3.3, we can obtain the following corollary.

Corollary 3.4 Let f € S(é, g) Then the radius of f to be a strongly starlike function of

order é in U 15 0.981868 - - -.

Theorem 3.5 Let f € S(«, 8). Also let a1(r) and ta(r) be given (as in Theorem 3.1) by (3.1)
and (3.4), respectively. Then the radius of f to be in the class SP is ro, where ro € (0,1) is the

smallest root of the following equation:

(V7 Dox el + (P77 Yt i) 120 @2

s

Proof We note that f € SP if and only if the function ZJ{ES) is in the parabolic region given
by
A= {(u,v): v* < 2u—1}.

Thus, for the function f to be in the class SP, it suffices to show that the point

(1 - [ﬁ ; 0‘] arctan (a;(r)), [ﬁ ; O‘] log (tz(T)))

is in the parabolic region A, that is,

3 —c 2<2[1_ <5;°‘> arctan(al(r))} ~1

WWW.Me



1142 Kwon O. S., et al.

We now define a function % : [0,1] — R by
k(r) == <ﬂ ; a) [log (tz(r))]2 + <2(ﬁ7r_ a)) arctan (aq(r)) — 1.

Then
E(0)=-1<0 and lim k(r) = oc.

r—l1—

Hence, there exists a solution of the equation k() = 0 in (0,1). Let 79 € (0,1) be the smallest
root of k(r) = 0. Then k(r) < 0 for all r < ro. Hence, f(z) € SP for all z (|z] < rp). O

Putting a = é and 3 = 3 in Theorem 3.5, we can obtain the following corollary.
Corollary 3.6 Let f € S(},3). Then the radius of f to be in the class SP is 0.697818- - .
Theorem 3.7 Let the function f be in the class S(«, 8). Suppose also that ay(r), as(r), t1(r)
and ta2(r) are given (as in Theorem 3.1) by (3.1) to (3.4). Then

f € S£7 |Z| < To,
where

ro := min{ry,ro}, 71,72 € (0,1),

and r1 and ro are the smallest root of the following equations:

({1 - (ﬂ i a) arctan (al(r))]2 - [(5 - "‘) log (@(r))}2 - 1)2

. (Q(ﬁﬂ_ a)>2 [log (t2(r))]- [1 - (/3 - a) arctan (al(r))] 1o, (3.13)

™

and
({1 - (ﬂ - a) azrctan (ag(r))] T [(5 - a) log (m(@)} - 1)22
4 (Q(ﬁﬂ_ a)> [log (t:1(r))]* - [1 - (ﬂ ; a) arctan (aQ(r))] —1=0, (3.14)
respectively.

Proof We note that f € SL if and only if the function Z}cé’j) is in the bounded region I' given
by
o= {(u,0) s u + o + 1+ 20%0% — 2u% — 20 < 1}.

We note also that this region I' is symmetric to the u-axis in uv-plane and

log (t1(r)) = —log (t2(r)).

Thus, if

(1 = [ﬁ - 0‘] arctan (a; (r)), [ﬂ - a] log (tz(r))> er (3.15)

n (as(r)), {ﬂ i a] log (tg(r))) er, (3.16)
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then f € SL for |z| = r < 1. The conditions (3.15) and (3.16) are equivalent to the following

inequalities:

([1 - (ﬁ i O‘) arctan (al(r))r - Kﬁ - a) log (tg(r))r - 1)2

. (2“; 0‘)>2[10g (L)) [1 - <ﬂ - “) arctan (al(r))r “1<0 @)

<[1 = <5 - 0‘) arctan (ag(r))r = [(ﬂ - O‘) log (tg(r))r - 1)2
+ (2”; a)>2[10g (t1(r)]* - [1 - (5 ; o‘) arctan (aQ(r))]2 -1<0, (3.18)

respectively. We now define a function g : [0,1] — R by

g(r) = ([1 - (5 - 0‘) arctan (mm)}2 - [(ﬂ ; O‘) log (t2(r))]2 - 1)2

2

+ (2(57: Oé)>2[log (t1(7”))]2 . [1 _ (5 ; 04) arctan (m(r))] ~1.

Then g is continuous in [0, 1]. Furthermore, we have

and

g(0)=—-1 and lir{1 g(r) = oo.

Hence, there exists a solution of the equation g(r) = 0in (0,1). Let 71 € (0,1) be the smallest
root of g(r) = 0. Then g(r) < 0 for all » < r;. Hence, (3.17) holds true for all » < r;. Using
the same argument as above, we can find ro € (0, 1) such that (3.14) holds true and that, for all
r < rg, (3.18) holds true. Thus, if we put rg = min{ry, 7}, then the function f satisfies (3.17)
and (3.18). Consequently, f € SL in |z| < r. O
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