Acta Mathematica Sinica, English Series Jul., 2014, Vol. 30, No. 7, pp. 1133–1144

Published online: June 15, 2014 DOI: 10.1007/s10114-014-3100-0 Http://www.ActaMath.com

Acta Mathematica Sinica, English Series

© Springer-Verlag Berlin Heidelberg & The Editorial Office of AMS 2014

Some Radius Problems Related to a Certain Subclass of Analytic Functions

Oh Sang KWON Young Jae SIM

Department of Mathematics, Kyungsung University, Busan 608-736, Republic of Korea E-mail: oskwon@ks.ac.kr yjsim@ks.ac.kr

Nak Eun CHO

Department of Applied Mathematics, Pukyung National University,
Busan 608-737, Republic of Korea
E-mail: necho@pknu.ac.kr

H. M. SRIVASTAVA¹⁾

Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada E-mail: harimsri@math.uvic.ca

Abstract For real parameters α and β such that $0 \le \alpha < 1 < \beta$, we denote by $\mathcal{S}(\alpha, \beta)$ the class of normalized analytic functions which satisfy the following two-sided inequality:

$$\alpha < \Re\left(\frac{zf'(z)}{f(z)}\right) < \beta, \quad z \in \mathbb{U},$$

where \mathbb{U} denotes the open unit disk. We find a sufficient condition for functions to be in the class $\mathcal{S}(\alpha,\beta)$ and solve several radius problems related to other well-known function classes.

Keywords Analytic functions, univalent functions, starlike functions, functions of bounded real positive real part, radius problems

MR(2010) Subject Classification 30C45, 30C55

1 Introduction, Definitions and Preliminaries

Let A denote the class of functions f(z), analytic in the open unit disk

$$\mathbb{U} = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \},$$

which are normalized by

$$f(0) = 0$$
 and $f'(0) = 1$.

Also let \mathcal{S} denote the subclass of \mathcal{A} composed of functions which are univalent in \mathbb{U} . As usual, we denote by \mathcal{S}^* and \mathcal{K} the classes of functions in \mathcal{A} which are, respectively, starlike and convex in \mathbb{U} . It is well known that

$$\mathcal{K} \subset \mathcal{S}^* \subset \mathcal{S}$$
.

Received February 21, 2013, accepted September 16, 2013

1) Corresponding author

We say that f is subordinate to F in \mathbb{U} , written as $f \prec F$ $(z \in \mathbb{U})$, if and only if

$$f(z) = F(w(z))$$

for some Schwartz function w(z) such that

$$w(0) = 0$$
 and $|w(z)| < 1$, $z \in \mathbb{U}$.

If F is univalent in \mathbb{U} , then the subordination $f \prec F$ is equivalent to

$$f(0) = F(0)$$
 and $f(\mathbb{U}) \subset F(\mathbb{U})$.

We denote by $S^*(A, B)$ the subclass of S^* consisting of the functions in A such that

$$\frac{zf'(z)}{f(z)} \prec \frac{1+Az}{1+Bz}, \quad z \in \mathbb{U}.$$

The subclass SP of the function class A is composed of parabolic starlike functions in \mathbb{U} , which satisfy the following inequality (see [9]):

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le \Re\left(\frac{zf'(z)}{f(z)} \right), \quad z \in \mathbb{U}.$$

Recently, Sokół [2, 10, 11] introduced the class \mathcal{SL} as a subclass of \mathcal{S}^* , which consists of functions f(z) in \mathcal{A} such that

$$\frac{zf'(z)}{f(z)} \prec \sqrt{1+z}, \quad z \in \mathbb{U}.$$

Moreover, a function $f \in \mathcal{A}$ is said to be strongly starlike of order α $(0 \le \alpha < 1)$ in \mathbb{U} if

$$\left| \arg \left(\frac{zf'(z)}{f(z)} \right) \right| \le \frac{\pi}{2} \alpha, \quad z \in \mathbb{U}.$$

Definition 1.1 Let the parameters α and β be real numbers such that $0 \le \alpha < 1 < \beta$. A function $f \in \mathcal{A}$ is said to belong to the class $\mathcal{S}(\alpha, \beta)$ if f satisfies the following inequality:

$$\alpha < \Re\left(\frac{zf'(z)}{f(z)}\right) < \beta, \quad z \in \mathbb{U}; \ 0 \le \alpha < 1 < \beta.$$

We remark that, for given parameters α and β ($0 \le \alpha < 1 < \beta$), $f \in \mathcal{S}(\alpha, \beta)$ if and only if f satisfies each of the following two subordination relationships:

$$\frac{zf'(z)}{f(z)} \prec \frac{1+(1-2\alpha)z}{1-z}, \quad z \in \mathbb{U} \quad \text{and} \quad \frac{zf'(z)}{f(z)} \prec \frac{1+(1-2\beta)z}{1-z}, \quad z \in \mathbb{U}.$$

The above-defined function class $S(\alpha, \beta)$ was introduced by Kuroki and Owa [5]. By using the following lemma, they also investigated several coefficient estimates for $f \in S(\alpha, \beta)$.

Lemma 1.2 (Kuroki and Owa [5]) Let $f(z) \in A$ and $0 \le \alpha < 1 < \beta$. Then $f \in S(\alpha, \beta)$ if and only if

$$\frac{zf'(z)}{f(z)} \prec 1 + \left(\frac{\beta - \alpha}{\pi}\right) i \log\left(\frac{1 - e^{2\pi i (\frac{1 - \alpha}{\beta - \alpha})} z}{1 - z}\right), \quad z \in \mathbb{U}. \tag{1.1}$$

Lemma 1.2 means that the function p(z) defined by

$$p(z) = 1 + \left(\frac{\beta - \alpha}{\pi}\right) i \log\left(\frac{1 - e^{2\pi i \left(\frac{1 - \alpha}{\beta - \alpha}\right)} z}{1 - z}\right)$$
(1.2)

maps the unit disk \mathbb{U} onto the strip domain w with $\alpha < \Re(w) < \beta$. We also note that the function $f \in \mathcal{A}$, given by

$$f(z) = z \exp\left(\left(\frac{\beta - \alpha}{\pi}\right) i \int_0^z \frac{1}{t} \log\left(\frac{1 - e^{2\pi i \left(\frac{1 - \alpha}{\beta - \alpha}\right)} z}{1 - z}\right) dt\right)$$
(1.3)

is in the class $S(\alpha, \beta)$.

In our present investigation, we first find a sufficient condition for functions to be in the class $S(\alpha, \beta)$. We then solve several radius problems related to other well-known function classes. For various other radius problems, which were considered recently for many different analytic function classes, the interested reader may be referred (for example) to the works [1, 4, 8, 12].

2 Relations Involving Bounds on the Real Parts

Lemma 2.1 below is a fairly well-known result.

Lemma 2.1 (MacGregor [6]) Let $f \in A$. Also let

$$\Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha, \quad z \in \mathbb{U}, \ 0 \le \alpha < 1.$$

Then

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \Phi(\alpha), \quad z \in \mathbb{U},$$

where

$$\Phi(\alpha) := \begin{cases} \frac{1 - 2\alpha}{2(2^{1 - 2\alpha} - 1)}, & \alpha \neq \frac{1}{2}, \\ \frac{1}{2\log 2}, & \alpha = \frac{1}{2}. \end{cases}$$
(2.1)

Another known result (Lemma 2.2 below) will also be needed in finding the relations involving upper bounds.

Lemma 2.2 (Miller and Mocanu [7]) Let Ξ be a set in the complex plane \mathbb{C} and let b be a complex number such that $\Re(b) > 0$. Suppose that a function $\vartheta : \mathbb{C}^2 \times \mathbb{U} \to \mathbb{C}$ satisfies the following condition:

$$\vartheta(\mathrm{i}\rho,\sigma;z) \not\in \Xi, \quad z \in \mathbb{U}, \ \rho,\sigma \le -\frac{|b-\mathrm{i}\rho|^2}{2\Re(b)}.$$

If the function p(z) defined by

$$p(z) = b + b_1 z + b_2 z^2 + \cdots$$

is analytic in \mathbb{U} and if

$$\vartheta(p(z), zp'(z); z) \in \Xi,$$

then

$$\Re\{p(z)\}>0,\quad z\in\mathbb{U}.$$

Theorem 2.3 Let $f \in \mathcal{A}$, $\beta > 1$ and

$$\Re\left(1 + \frac{zf''(z)}{f'(z)}\right) < \beta, \quad z \in \mathbb{U}. \tag{2.2}$$

Then

$$\Re\left(\frac{zf'(z)}{f(z)}\right) < \Psi(\beta) := \frac{-1 + 2\beta + \sqrt{4\beta^2 - 4\beta + 9}}{4}.$$
 (2.3)

Proof First, we note that

$$\Psi(\beta) := \frac{-1 + 2\beta + \sqrt{4\beta^2 - 4\beta + 9}}{4} > 1, \quad \beta > 1.$$

Thus, if we let

$$p(z) = \frac{1}{1 - \Psi(\beta)} \left(\frac{zf'(z)}{f(z)} - \Psi(\beta) \right), \tag{2.4}$$

then p(z) is analytic in \mathbb{U} and p(0) = 1. Differentiating both sides of (2.4) with respect to z, we easily obtain

$$1 + \frac{zf''(z)}{f'(z)} = [1 - \Psi(\beta)]p(z) + \Psi(\beta) + \frac{[1 - \Psi(\beta)]zp'(z)}{[1 - \Psi(\beta)]p(z) + \Psi(\beta)}$$
$$= \psi(p(z), zp'(z)),$$

where

$$\psi(r,s) := [1 - \Psi(\beta)]r + \Psi(\beta) + \frac{[1 - \Psi(\beta)]s}{[1 - \Psi(\beta)]r + \Psi(\beta)}.$$

Using (2.2), we have

$$\{\psi(p(z), zp'(z)) : z \in \mathbb{U}\} \subset \{w : w \in \mathbb{C} \text{ and } \Re(w) < \beta\} =: \Omega.$$

Now, for all real numbers $\rho, \sigma \leq -\frac{|1-i\rho|^2}{2}$, we have

$$\begin{split} \Re\{\psi(i\rho,\sigma)\} &= \Re\bigg([1-\Psi(\beta)]\mathrm{i}\rho + \Psi(\beta) + \frac{[1-\Psi(\beta)]\sigma}{[1-\Psi(\beta)]\mathrm{i}\rho + \Psi(\beta)}\bigg) \\ &= \Psi(\beta) - [\Psi(\beta)-1]\frac{\sigma\Psi(\beta)}{[\Psi(\beta)]^2 + [1-\Psi(\beta)]^2\rho^2} \\ &\geq \Psi(\beta) + \frac{\Psi(\beta)[\Psi(\beta)-1](1+\rho^2)}{2([\Psi(\beta)]^2 + [1-\Psi(\beta)]^2\rho^2)}. \end{split}$$

If we let the function $g(\rho)$ be given by

$$g(\rho) = \frac{1 + \rho^2}{[\Psi(\beta)]^2 + [\Psi(\beta) - 1]^2 \rho^2},$$

then $g(\rho)$ is a continuous even function of the argument ρ and $g(\rho)$ satisfies each of the following relationships:

$$g(0) = \frac{1}{[\Psi(\beta)]^2}$$

and

$$\lim_{\rho\to\infty}g(\rho)=\frac{1}{[\Psi(\beta)-1]^2}>\frac{1}{[\Psi(\beta)]^2}.$$

Also, upon differentiating $g(\rho)$ with respect to ρ , we obtain

$$g'(\rho) = \frac{2[2\Psi(\beta) - 1]\rho}{\{[\Psi(\beta)]^2 + [\Psi(\beta) - 1]^2\rho^2\}^2}.$$

Hence, $g'(\rho) = 0$ occurs only at $\rho = 0$. Therefore, we have

which yields

$$\Re\{\psi(\mathrm{i}\rho,\sigma)\} \ge \Psi(\beta) + \frac{\Psi(\beta)[\Psi(\beta) - 1]g(\rho)}{2}$$
$$\ge \frac{2[\Psi(\beta)]^2 + \Psi(\beta) - 1}{2\Psi(\beta)} = \beta.$$

This shows that $\Re\{\psi(i\rho,\sigma)\} \notin \Omega$. By Lemma 2.2, we thus conclude that $\Re\{p(z)\} > 0$ and that the inequality (2.3) holds true. The proof of Theorem 2.3 is thus complete.

By combining Lemma 2.1 and Theorem 2.3, we can obtain the following result.

Theorem 2.4 Let $f \in A$. Suppose also that

$$\alpha < \Re\left(1 + \frac{zf''(z)}{f'(z)}\right) < \beta, \quad z \in \mathbb{U}, \ 0 \le \alpha < 1 < \beta.$$
 (2.5)

Then

$$\Phi(\alpha) < \Re\left(\frac{zf'(z)}{f(z)}\right) < \Psi(\beta),$$
(2.6)

where $\Phi(\alpha)$ and $\Psi(\beta)$ are given in (2.1) and (2.3), respectively.

3 Radius Problems Involving Subclasses of Analytic Functions

Our first result on the radius problem involves the function class $S(\alpha, \beta)$.

Theorem 3.1 Let the function f be in the class $S(\alpha, \beta)$. Then, for each z (|z| = r < 1),

$$1 - \left(\frac{\beta - \alpha}{\pi}\right) \arctan\left(a_1(r)\right) < \Re\left(\frac{zf'(z)}{f(z)}\right) < 1 - \left(\frac{\beta - \alpha}{\pi}\right) \arctan\left(a_2(r)\right)$$

and

$$\left(\frac{\beta - \alpha}{\pi}\right) \log \left(t_1(r)\right) < \Im \left(\frac{zf'(z)}{f(z)}\right) < \left(\frac{\beta - \alpha}{\pi}\right) \log \left(t_2(r)\right),$$

where

$$a_1(r) := \frac{(r^2 - r^4 \cos \varphi) \sin \varphi + \sqrt{\mathfrak{D}(r)}}{(\sin^2 \varphi - 1)r^4 + 2r^2 - 1},$$
(3.1)

$$a_2(r) := \frac{(r^2 - r^4 \cos \varphi) \sin \varphi - \sqrt{\mathfrak{D}(r)}}{(\sin^2 \varphi - 1)r^4 + 2r^2 - 1},$$
(3.2)

$$t_1(r) := \frac{\sqrt{1 - 2r^2 \cos \varphi + r^4} - (\sqrt{2(1 - \cos \varphi)})r}{1 - r^2},$$
(3.3)

$$t_2(r) := \frac{\sqrt{1 - 2r^2 \cos \varphi + r^4} + (\sqrt{2(1 - \cos \varphi)})r}{1 - r^2}$$
(3.4)

and

$$\mathfrak{D}(r) := r^4 (1 - r^2 \cos \varphi)^2 \sin^2 \varphi + r^2 (1 - \cos \varphi) [r^4 (\sin^2 \varphi - 1) + 2r^2 - 1] \cdot [r^2 (1 + \cos \varphi) - 2], \tag{3.5}$$

with φ being given by

$$\varphi := 2\left(\frac{1-\alpha}{\beta-\alpha}\right)\pi.$$

Proof Suppose that $f \in \mathcal{S}(\alpha, \beta)$. Then, by Lemma 1.2, we have

$$\frac{zf'(z)}{f(z)} \prec 1 + \left(\frac{\beta - \alpha}{\pi}\right) i \log\left(\frac{1 - e^{2\pi i (\frac{1 - \alpha}{\beta - \alpha})}z}{1 - z}\right), \quad z \in \mathbb{U}.$$

Thus, by the definition of subordination, there is a Schwartz function w(z), satisfying the following conditions:

$$w(0) = 0$$
 and $|w(z)| < 1$, $z \in \mathbb{U}$,

such that

$$\frac{zf'(z)}{f(z)} = 1 + \left(\frac{\beta - \alpha}{\pi}\right) i \log\left(\frac{1 - e^{2\pi i (\frac{1 - \alpha}{\beta - \alpha})} w(z)}{1 - w(z)}\right), \quad z \in \mathbb{U}.$$

We now put

$$q(z) = \frac{1 - e^{2\pi i \left(\frac{1-\alpha}{\beta-\alpha}\right)} w(z)}{1 - w(z)},$$

which readily yields

$$q(z) - 1 = \left(q(z) - e^{2\pi i \left(\frac{1-\alpha}{\beta-\alpha}\right)}\right) w(z).$$

For $|z| \le r < 1$, using the known fact that (see [3])

$$|w(z)| \le |z|, \quad z \in \mathbb{U},$$

we find that

$$|q(z) - 1| \le |q(z) - e^{2\pi i (\frac{1-\alpha}{\beta-\alpha})}| \cdot r, \quad |z| \le r < 1.$$
 (3.6)

If we put

$$q(z) = u + iv$$
 and $\varphi = 2\pi \left(\frac{1-\alpha}{\beta-\alpha}\right)$,

then, upon squaring both sides of (3.6), we get

$$\left(u - \frac{1 - r^2 \cos \varphi}{1 - r^2}\right)^2 + \left(v + \frac{r^2 \sin \varphi}{1 - r^2}\right)^2 \le \frac{2r^2(1 - \cos \varphi)}{(1 - r^2)^2}.$$
(3.7)

Hence, q maps the disk

$$\mathbb{U}_r := \{ z : z \in \mathbb{C} \text{ and } |z| \le r < 1 \}$$

onto the circle which the center C is given by

$$\mathbf{C}: \left(\frac{1 - r^2 \cos \varphi}{1 - r^2}, -\frac{r^2 \sin \varphi}{1 - r^2}\right)$$

and radius R given by

$$R := \sqrt{2(1 - \cos \varphi)} \left(\frac{r}{1 - r^2}\right).$$

We note also that the origin O is outside of the circle (3.7).

We shall now find the bounds of |q(z)|. Since the origin O is outside of the circle (3.7), |q(z)| is less than the sum of $\overline{\text{OC}}$ and the radius R and |q(z)| is greater than the difference of $\overline{\text{OC}}$ and the radius R, that is,

$$|q(z)| \le \frac{\sqrt{1 - 2r^2 \cos \varphi + r^4} + \left(\sqrt{2(1 - \cos \varphi)}\right)r}{1 - r^2} =: t_2(r)$$

and

$$|q(z)| \ge \frac{\sqrt{1 - 2r^2 \cos \varphi + r^4} - (\sqrt{2(1 - \cos \varphi)})r}{1 - r^2} =: t_1(r),$$

which are already given by (3.4) and (3.3), respectively.

Next, in order to find the bounds of $\arg\{q(z)\}\$, we let v=au be the equation of a straight line L which is tangent to the circle (3.7). Then u satisfies the following equation:

$$(1+a^2)u^2 + 2\left(-\frac{1-r^2\cos\varphi}{1-r^2} + \frac{ar^2\sin\varphi}{1-r^2}\right)u + \frac{(1-r^2\cos\varphi)^2 + r^4\sin^2\varphi - 2r^2(1-\cos\varphi)}{(1-r^2)^2} = 0.$$

Since the line L is tangent to the circle (3.2), we have

$$\left(-\frac{1-r^2\cos\varphi}{1-r^2} + \frac{ar^2\sin\varphi}{1-r^2}\right)^2 - (1+a^2)\left(\frac{(1-r^2\cos\varphi)^2 + r^4\sin^2\varphi - 2r^2(1-\cos\varphi)}{(1-r^2)^2}\right) = 0.$$

Solving this last equation for the unknown parameter a, we can obtain precisely the solutions $a_1(r)$ and $a_2(r)$ asserted by the equations (3.1) and (3.2) in terms of \mathfrak{D} given by (3.5). Therefore, the upper and the lower bounds of $\arg q(z)$ are $\arctan (a_1(r))$ and $\arctan (a_2(r))$, respectively. Hence, $\log(q(z))$ maps the circle \mathbb{U}_r into the rectangle \mathbb{D}_1 , where

$$\mathbb{D}_1 = \{(u, v) : \log(t_2(r)) \le u \le \log(t_1(r)) \text{ and } \arctan(a_2(r)) \le v \le \arctan(a_1(r))\}.$$

Thus, clearly, the function $i \log (q(z))$ maps the circle \mathbb{U}_r into the rectangle \mathbb{D}_2 , where

$$\mathbb{D}_2 = \{(u, v) : -\arctan\left(a_1(r)\right) \le u \le -\arctan\left(a_2(r)\right) \text{ and } \log\left(t_2(r)\right) \le v \le \log\left(t_1(r)\right)\}.$$

Multiplying by $\frac{\beta-\alpha}{\pi}$ each bound of the rectangle \mathbb{D}_2 and translating the region by 1 along the u-axis, we can obtain the following region:

$$\mathbb{D} = \left\{ (u, v) : 1 - \left(\frac{\beta - \alpha}{\pi} \right) \arctan \left(a_1(r) \right) \le u \le 1 - \left(\frac{\beta - \alpha}{\pi} \right) \arctan \left(a_2(r) \right) \right\}$$
and
$$\left(\frac{\beta - \alpha}{\pi} \right) \log \left(t_2(r) \right) \le v \le \left(\frac{\beta - \alpha}{\pi} \right) \log \left(t_1(r) \right) \right\},$$

which is mapped into the circle \mathbb{U}_r by the function p(z) given by

$$p(z) = 1 + \left(\frac{\beta - \alpha}{\pi}\right) i \log (q(z)).$$

Theorem 3.2 Let α, β, γ and δ be given such that

$$0 \le \alpha < \gamma < 1$$
 and $\beta > \delta > 1$.

Let the function f be in the class $S(\alpha, \beta)$. Suppose also that $a_1(r)$ and $a_2(r)$ are given (as in Theorem 3.1) by (3.1) and (3.2), respectively. Then

$$f \in \mathcal{S}(\gamma, \delta), \quad |z| \le r_0,$$

where

 $r_0 = \min\{r_1, r_2\}, \quad r_1, r_2 \in (0, 1),$

and r_1 and r_2 are the smallest root of the following equations:

$$1 - \left(\frac{\beta - \alpha}{\pi}\right) \arctan\left(a_1(r)\right) - \gamma = 0$$

and

$$1 - \left(\frac{\beta - \alpha}{\pi}\right) \arctan\left(a_2(r)\right) - \delta = 0,$$

respectively.

Proof By Theorem 3.1, for each z (|z| = r), the function f satisfies the following two-sided inequality:

$$1 - \left(\frac{\beta - \alpha}{\pi}\right) \arctan\left(a_1(r)\right) < \Re\left(\frac{zf'(z)}{f(z)}\right) < 1 - \left(\frac{\beta - \alpha}{\pi}\right) \arctan\left(a_2(r)\right).$$

For the function f to be in the class $\mathcal{S}(\gamma, \delta)$, it suffices to satisfy the following inequalities:

$$1 - \left(\frac{\beta - \alpha}{\pi}\right) \arctan\left(a_1(r)\right) > \gamma \tag{3.8}$$

and

$$1 - \left(\frac{\beta - \alpha}{\pi}\right) \arctan\left(a_2(r)\right) < \delta. \tag{3.9}$$

We now define a function $g:[0,1] \to \mathbb{R}$ by

$$g(r) := 1 - \left(\frac{\beta - \alpha}{\pi}\right) \arctan\left(a_1(r)\right) - \gamma.$$

Then g is continuous and $g(0) = 1 - \gamma > 0$. Since

$$\lim_{r \to 1^{-}} a_1(r) = \frac{1 - \cos \varphi}{\sin \varphi} \quad \text{and} \quad \tan^2 \left(\frac{1}{2}\varphi\right) = \frac{1 - \cos \varphi}{\sin \varphi},\tag{3.10}$$

we have

$$\lim_{r \to 1-} g(r) = \alpha - \gamma < 0.$$

Hence, there exists a solution of the equation g(r) = 0 in (0,1). Let $r_1 \in (0,1)$ be the smallest root of g(r) = 0. Then g(r) > 0 for all $r < r_1$. Therefore,

$$1 - \left(\frac{\beta - \alpha}{\pi}\right) \arctan\left(a_1(r)\right) > \gamma$$

for all $r < r_1$. Using the same argument as above, we can show that there exists a solution $r_2 \in (0,1)$ of the equation:

$$1 - \left(\frac{\beta - \alpha}{\pi}\right) \arctan\left(a_2(r)\right) - \delta = 0$$

and that

$$1 - \left(\frac{\beta - \alpha}{\pi}\right) \arctan\left(a_2(r)\right) < \delta$$

for all $r < r_2$. Hence, if we put $r_0 = \min\{r_1, r_2\}$, then the function f satisfies (3.8) and (3.9).

Consequently, $f \in \mathcal{S}(\gamma, \delta)$ in $|z| \leq r_0$.

Theorem 3.3 Let $f \in \mathcal{S}(\alpha, \beta)$. Then the radius of f to be a strongly starlike function of order γ in \mathbb{U} is r_0 , where $r_0 \in (0, 1)$ is the smallest root of the following equation:

$$\arctan\left(\frac{\left(\frac{\beta-\alpha}{\pi}\right)\log\left(t_2(r)\right)}{1-\left(\frac{\beta-\alpha}{\pi}\right)\arctan\left(a_1(r)\right)}\right) - \frac{\pi}{2}\gamma = 0,\tag{3.11}$$

where $a_1(r)$ and $t_2(r)$ are given (as in Theorem 3.1) by (3.1) and (3.4), respectively.

Proof We first note that

$$\log(t_2(r)) = -\log(t_1(r)).$$

Hence, by Theorem 3.1, for $f \in \mathcal{S}(\alpha, \beta)$, we have

$$\left| \arg \left\{ \frac{zf'(z)}{f(z)} \right\} \right| \le \arctan \left(\frac{\left(\frac{\beta - \alpha}{\pi}\right) \log \left(t_2(r)\right)}{1 - \left(\frac{\beta - \alpha}{\pi}\right) \arctan \left(a_1(r)\right)} \right).$$

Thus, for the function f to be a strongly starlike function of order γ in \mathbb{U} , it suffices to satisfy the following inequality:

$$h(r) := \arctan\left(\frac{\left(\frac{\beta - \alpha}{\pi}\right) \log\left(t_2(r)\right)}{1 - \left(\frac{\beta - \alpha}{\pi}\right) \arctan\left(a_1(r)\right)}\right) - \frac{\pi}{2}\gamma < 0.$$

Using these observations in (3.10), we can easily show that

$$h(0) = -\frac{\pi}{2}\gamma < 0$$
 and $\lim_{r \to 1^-} h(r) = \infty$.

Hence, there exists a solution of the equation h(r) = 0 in (0,1). Let $r_0 \in (0,1)$ be the smallest root of the equation h(r) = 0. Then h(r) < 0 for $r < r_0$. Thus, f is a strongly starlike function of order γ for z ($|z| \le r_0$).

Putting $\alpha = \frac{1}{2}$, $\beta = \frac{3}{2}$ and $\gamma = \frac{1}{2}$ in Theorem 3.3, we can obtain the following corollary.

Corollary 3.4 Let $f \in \mathcal{S}(\frac{1}{2}, \frac{3}{2})$. Then the radius of f to be a strongly starlike function of order $\frac{1}{2}$ in \mathbb{U} is $0.981868 \cdots$.

Theorem 3.5 Let $f \in \mathcal{S}(\alpha, \beta)$. Also let $a_1(r)$ and $t_2(r)$ be given (as in Theorem 3.1) by (3.1) and (3.4), respectively. Then the radius of f to be in the class \mathcal{SP} is r_0 , where $r_0 \in (0, 1)$ is the smallest root of the following equation:

$$\left(\frac{(\beta - \alpha)}{\pi}\right)^{2} \left[\log\left(t_{2}(r)\right)\right]^{2} + \left(\frac{2(\beta - \alpha)}{\pi}\right) \arctan\left(a_{1}(r)\right) - 1 = 0.$$
 (3.12)

Proof We note that $f \in \mathcal{SP}$ if and only if the function $\frac{zf'(z)}{f(z)}$ is in the parabolic region given by

$$\Lambda = \{(u, v) : v^2 < 2u - 1\}.$$

Thus, for the function f to be in the class \mathcal{SP} , it suffices to show that the point

$$\left(1 - \left[\frac{\beta - \alpha}{\pi}\right] \arctan\left(a_1(r)\right), \left[\frac{\beta - \alpha}{\pi}\right] \log\left(t_2(r)\right)\right)$$

is in the parabolic region Λ , that is,

$$\left[\left(\frac{\beta - \alpha}{\pi} \right) \log \left(t_2(r) \right) \right]^2 < 2 \left[1 - \left(\frac{\beta - \alpha}{\pi} \right) \arctan \left(a_1(r) \right) \right] - 1.$$

We now define a function $k:[0,1]\to\mathbb{R}$ by

$$k(r) := \left(\frac{\beta - \alpha}{\pi}\right)^2 \left[\log\left(t_2(r)\right)\right]^2 + \left(\frac{2(\beta - \alpha)}{\pi}\right) \arctan\left(a_1(r)\right) - 1.$$

Then

$$k(0) = -1 < 0$$
 and $\lim_{r \to 1^{-}} k(r) = \infty$.

Hence, there exists a solution of the equation k(r) = 0 in (0,1). Let $r_0 \in (0,1)$ be the smallest root of k(r) = 0. Then k(r) < 0 for all $r < r_0$. Hence, $f(z) \in \mathcal{SP}$ for all $z \mid |z| \leq r_0$.

Putting $\alpha = \frac{1}{2}$ and $\beta = \frac{3}{2}$ in Theorem 3.5, we can obtain the following corollary.

Corollary 3.6 Let $f \in \mathcal{S}(\frac{1}{2}, \frac{3}{2})$. Then the radius of f to be in the class \mathcal{SP} is $0.697818\cdots$.

Theorem 3.7 Let the function f be in the class $S(\alpha, \beta)$. Suppose also that $a_1(r)$, $a_2(r)$, $t_1(r)$ and $t_2(r)$ are given (as in Theorem 3.1) by (3.1) to (3.4). Then

$$f \in \mathcal{SL}, \quad |z| \le r_0,$$

where

$$r_0 := \min\{r_1, r_2\}, \quad r_1, r_2 \in (0, 1),$$

and r_1 and r_2 are the smallest root of the following equations:

$$\left(\left[1 - \left(\frac{\beta - \alpha}{\pi} \right) \arctan\left(a_1(r) \right) \right]^2 - \left[\left(\frac{\beta - \alpha}{\pi} \right) \log\left(t_2(r) \right) \right]^2 - 1 \right)^2 \\
+ \left(\frac{2(\beta - \alpha)}{\pi} \right)^2 \left[\log\left(t_1(r) \right) \right]^2 \cdot \left[1 - \left(\frac{\beta - \alpha}{\pi} \right) \arctan\left(a_1(r) \right) \right]^2 - 1 = 0, \tag{3.13}$$

and

$$\left(\left[1 - \left(\frac{\beta - \alpha}{\pi} \right) \arctan\left(a_2(r) \right) \right]^2 - \left[\left(\frac{\beta - \alpha}{\pi} \right) \log\left(t_2(r) \right) \right]^2 - 1 \right)^2 \\
+ \left(\frac{2(\beta - \alpha)}{\pi} \right)^2 \left[\log\left(t_1(r) \right) \right]^2 \cdot \left[1 - \left(\frac{\beta - \alpha}{\pi} \right) \arctan\left(a_2(r) \right) \right]^2 - 1 = 0, \tag{3.14}$$

respectively.

Proof We note that $f \in \mathcal{SL}$ if and only if the function $\frac{zf'(z)}{f(z)}$ is in the bounded region Γ given by

$$\Gamma := \{(u, v) : u^4 + v^4 + 1 + 2u^2v^2 - 2u^2 - 2v^2 < 1\}.$$

We note also that this region Γ is symmetric to the u-axis in uv-plane and

$$\log (t_1(r)) = -\log (t_2(r)).$$

Thus, if

$$\left(1 - \left[\frac{\beta - \alpha}{\pi}\right] \arctan\left(a_1(r)\right), \left[\frac{\beta - \alpha}{\pi}\right] \log\left(t_2(r)\right)\right) \in \Gamma$$
(3.15)

and

$$\left(1 - \left[\frac{\beta - \alpha}{\pi}\right] \arctan\left(a_2(r)\right), \left[\frac{\beta - \alpha}{\pi}\right] \log\left(t_2(r)\right)\right) \in \Gamma,$$
(3.16)

then $f \in \mathcal{SL}$ for |z| = r < 1. The conditions (3.15) and (3.16) are equivalent to the following inequalities:

$$\left(\left[1 - \left(\frac{\beta - \alpha}{\pi} \right) \arctan\left(a_1(r) \right) \right]^2 - \left[\left(\frac{\beta - \alpha}{\pi} \right) \log\left(t_2(r) \right) \right]^2 - 1 \right)^2 \\
+ \left(\frac{2(\beta - \alpha)}{\pi} \right)^2 \left[\log\left(t_1(r) \right) \right]^2 \cdot \left[1 - \left(\frac{\beta - \alpha}{\pi} \right) \arctan\left(a_1(r) \right) \right]^2 - 1 < 0$$
(3.17)

and

$$\left(\left[1 - \left(\frac{\beta - \alpha}{\pi} \right) \arctan\left(a_2(r) \right) \right]^2 - \left[\left(\frac{\beta - \alpha}{\pi} \right) \log\left(t_2(r) \right) \right]^2 - 1 \right)^2 \\
+ \left(\frac{2(\beta - \alpha)}{\pi} \right)^2 \left[\log\left(t_1(r) \right) \right]^2 \cdot \left[1 - \left(\frac{\beta - \alpha}{\pi} \right) \arctan\left(a_2(r) \right) \right]^2 - 1 < 0, \tag{3.18}$$

respectively. We now define a function $g:[0,1]\to\mathbb{R}$ by

$$g(r) = \left(\left[1 - \left(\frac{\beta - \alpha}{\pi} \right) \arctan\left(a_1(r) \right) \right]^2 - \left[\left(\frac{\beta - \alpha}{\pi} \right) \log\left(t_2(r) \right) \right]^2 - 1 \right)^2 + \left(\frac{2(\beta - \alpha)}{\pi} \right)^2 \left[\log\left(t_1(r) \right) \right]^2 \cdot \left[1 - \left(\frac{\beta - \alpha}{\pi} \right) \arctan\left(a_1(r) \right) \right]^2 - 1.$$

Then g is continuous in [0,1]. Furthermore, we have

$$g(0) = -1$$
 and $\lim_{r \to 1-} g(r) = \infty$.

Hence, there exists a solution of the equation g(r) = 0 in (0,1). Let $r_1 \in (0,1)$ be the smallest root of g(r) = 0. Then g(r) < 0 for all $r < r_1$. Hence, (3.17) holds true for all $r < r_1$. Using the same argument as above, we can find $r_2 \in (0,1)$ such that (3.14) holds true and that, for all $r < r_2$, (3.18) holds true. Thus, if we put $r_0 = \min\{r_1, r_2\}$, then the function f satisfies (3.17) and (3.18). Consequently, $f \in \mathcal{SL}$ in $|z| \le r_0$.

References

- [1] Amer, A., Darus, M.: On radius problems in the class of univalent functions. *Internat. J. Pure Appl. Math.*, 73, 471–476 (2011)
- [2] Aouf, M. K., Dziok, J., Sokół, J.: On a subclass of strongly starlike functions. Appl. Math. Lett., 24, 27–32 (2011)
- [3] Duren, P. L.: Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983
- [4] Kobashi, H., Kuroki, K., Owa, S.: Notes on radius problems of certain univalent functions. Gen. Math., 17(4), 5–12 (2009)
- [5] Kuroki, K., Owa, S.: Notes on new class for certain analytic functions. RIMS Kôkyûroku, 1772, 21–25 (2011)
- [6] MacGregor, T. H.: A subordination for convex functions of order α. J. London Math. Soc. (Ser. 2), 9, 530–536 (1975)
- [7] Miller, S. S., Mocanu, P. T.: Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, No. 225, Marcel Dekker Incorporated, New York and Basel, 2000
- [8] Noor, K. I., Arif, M.: Some radius problems for certain classes of analytic functions with fixed second coefficients. Nonl. Funct. Anal. Appl., 15, 79–85 (2010)
- [9] Rønning, F.: Uniformly convex functions and a corresponding class of starlike functions. Proc. Amer. Math. Soc., 118, 189–196(1993)

[10] Sokól, J.: Coefficient estimates in a class of strongly starlike functions. Kyungpook Math. J., 49, 349–353 (2009)

- [11] Sokół, J.: Radius problems in the class \mathcal{SL}^* . Appl. Math. Comput., **214**, 569–573 (2009)
- [12] Uyanik, N., Owa, S.: Note on radius problems for certain class of analytic functions. Fract. Calc. Appl. Anal., 13, 553–560 (2010)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

